泰安卫星同步时钟系统

时间:2021年04月18日 来源:

    所述的伪随机码生成模块产生与北斗信号兼容的伪随机码,且所述的多路伪卫星信号生成模块中的每个模块采用不同的伪随机码,所述输出控制模块在所述同步信号的同步下,开始按照频率。将信息码通过bpsk方式调制到所述同频同相的载波上,所述发射电路将调制好的伪卫星信号通过天线发射到待定位空间中,为伪卫星用户提供伪卫星定位信号。实施例4一种利用实施例3所述基于gps的l1频段的伪卫星时钟同步的电路系统的工作方法,具体步骤包括:(1)所述基准信号源模块通过分频器将基准信号源分频为周期为两倍北斗d1电文主帧周期(60s)的信号,再通过所述bpsk调制器将基准信号源的信号和分频得到的信号进行bpsk调制,产生每隔一个主帧周期(30s)相位跳变180°的基准信号,并发送给距离基准信号源模块间距完全相等的各个伪卫星信号生成模块,保证各个伪卫星信号生成模块收到的信号严格同频同相。(2)所述的各个伪卫星信号生成模块接收基准信号源模块发送来的同频同相的信号,通过所述的接收电路对收到的信号进行滤波、低噪声放大和信号驱动,增加接收到的信号的可用性。(3)所述的时钟恢复电路将接收电路处理后的信号作为输入参考信号,利用负反馈的原理进行相位锁定。淄博正瑞电子公司坚持以“市场需求为导向,品质创新为基础,顾客满意为宗旨。泰安卫星同步时钟系统

    时钟源用于提供标准时钟信号,授时系统主要包括无线授时和有线授时两类。无线授时系统包括美国GPS(GlobalPositioningSystem)导航系统、欧洲伽利略(Galileo)导航系统、中国北斗导航系统和俄罗斯全球导航卫星系统(GLINASS)等;有线授时系统以网络或专线作为载体,例如通信网络授时系统。目前变电站中主要应用的时钟源为GPS卫星授时和北斗授时技术。(1)GPS卫星授时GPS(GlobalPositioningSystem)即全球定位系统,是美国从20世纪70年代开始研制的。GPS系统由专门的接收卫星发射的信号,可以获得位置、时间和其他相关信息。GPS系统每秒发送一次信号,其时间精度在100ns以内。其时间信息包含年、月、日、时、分、秒以及1PPS(标准秒)信号,因而具有很高的频率精度和时间精度。在综自变电站中采用GPS卫星同步时钟可以实现全站各系统在统一时间基准下的运行监控和事故后的故障分析。(2)北斗授时技术北斗卫星导航系统是中国**开发的全球卫星导航系统,类似于美国的GPS和欧洲的伽利略定位系统,它提供海、陆、空的全球导航定位服务,目前已经发展至第二代,授时精度可以达到20ns。目前已将13颗北斗导航系统组网卫星顺利送入太空预定转移轨道。是一个连续的时间系统。泰安卫星同步时钟系统淄博正瑞电子锐意进取,持续创新为各行各业提供专业化服务。

    所述时钟恢复电路包括鉴相器pfd、电荷泵chp、环路滤波器lpf和压控振荡器vco,鉴相器、电荷泵、环路滤波器和压控振荡器依次首尾相连,压控振荡器的输出端为时钟恢复电路的输出端,时钟恢复电路的输出信号为卫星载波信号;鉴相器输入端连接接收电路的驱动模块,鉴相器一路输出信号连接至电荷泵,鉴相器另一路up端的信号为脉冲宽度检测电路的输入端,鉴相器另一路up端输出相位误差信号,所述相位误差信号为具有一定宽度的脉冲信号;所述时钟恢复电路利用所述接收电路处理后的信号作为输入参考,通过相位误差反馈对输入参考信号进行时钟恢复,时钟恢复电路的输出频率为卫星载波频率fc的信号,所述时钟恢复电路用于保证各个伪卫星生成模块产生的载波信号同频同相,所述的时钟恢复电路还用于检测输入信号中的相位跳变信息,保证在输出载波信号不受影响的情况下,内部的鉴相器输出相位误差信号,所述相位误差信号为具有一定宽度的脉冲信号。所述脉冲宽度检测电路包括延时电路和相位比较电路,脉冲宽度检测电路的输入端一路信号连接至相位比较电路、另一路信号连接至延时电路,延时电路输出端连接至相位比较电路,相位比较电路的输出端为脉冲宽度检测电路的输出端。

    根据需要和技术要求,主时钟可留有接口,用来接收上一级时间同步系统下发的有线时间基准信号。在智能变电站中,时间装置的技术特点及主要指标如下:(1)多时钟信号源输入无缝切换功能。具备信号输入仲裁机制,在信号切换时1PPS输出稳定在μs以内。(2)异常输入信息防误功能。在外界输入信号受到干扰时,仍然能准确输出时间信息。(3)高精度授时、守时性能。时间同步准确度优于1μs,秒脉冲抖动小于μs,守时性能优于1μs/h。(4)从时钟延时补偿功能。弥补传输介质对秒脉冲的延迟影响。(5)提供高精度可靠地IEEE1588时钟源。(6)支持DL/T860建模及MMS组网。(7)丰富的对时方式,配置灵活。支持RS232、RS485、空触点、光纤、网络等多种对时方式。淄博正瑞电子始终坚持 “讲团结,重科技,创质量,守信誉” 的治厂方针。

    各个伪随机码数据生成模块分别采用不同的伪随机码。一种利用上述伪卫星时钟同步的电路系统的工作方法,具体步骤包括:(1)所述基准信号源模块通过分频器将基准信号源输出的信号分频为周期为两倍卫星帧周期的信号,再通过所述bpsk调制器将基准信号源的信号和分频得到的信号进行bpsk调制,产生每隔一个帧周期相位跳变180°的基准信号,所述基准信号指所述基准信号源模块终发射出的信号,所述基准信号包含时钟信息和同步信息,所述伪卫星信号生成模块可以从所述基准信号中恢复和检测出时钟信号和同步信号,所述基准信号发送给与基准信号源模块间距完全相等的各个伪卫星信号生成模块,保证各个伪卫星信号生成模块收到的信号严格同频同相;(2)所述的各个伪卫星信号生成模块接收基准信号源模块发送来的同频同相的基准信号,通过接收电路对收到的信号进行滤波、低噪声放大和信号驱动,增加接收到的信号的可用性;(3)所述的时钟恢复电路将接收电路处理后的信号作为输入参考信号,利用负反馈的原理进行相位锁定,从而产生所需要的同频同相的卫星载波信号;所述的同频同相信号是指各个伪卫星生成模块用作载波的信号是同频率同相位的信号。淄博正瑞电子拥有先进的产品生产设备,雄厚的技术力量。泰安卫星同步时钟系统

淄博正瑞电子全体员工真诚为您服务。泰安卫星同步时钟系统

    全球定位系统可以为用户提供全天候、不间断、高精度的实时定位、导航和授时信息。但是由于卫星导航信号本质是一种电磁波,容易受到各种干扰,使得接收到的信号较弱。尤其是当gnss接收机在室内工作时,卫星信号受建筑物的影响会衰减甚至出现无信号的情况,造成定位精度低或者无法定位。应对这种情况,目前主要的解决方法有wlan辅助定位、umts辅助定位、惯导、红外定位和超声波定位等。这些解决方案各有优点,但仍不够成熟,且难以实现与gnss系统的无缝衔接。伪卫星以其发射功率可控、数量灵活和可随意布设的特点,能够方便地应用在室内、地下停车场等无卫星信号的区域。在实际应用中,伪卫星系统**停留在理论或者实验阶段,没有得到大范围的推广。其主要原因是,基于伪卫星系统的精确定位,需要准确的伪卫星坐标信息和伪距观测信息。伪卫星坐标信息的获取过程为,首先通过精细测量得到伪卫星坐标位置,然后将其编写到伪卫星的星历中,终接收机可以通过星历解码获取伪卫星坐标位置。而伪距观测信息需要通过各个伪卫星到接收机的时间差乘以光速得到。只有各个伪卫星的发射时钟精细同步,才能保证接收机到各个伪卫星的伪距观测值的有效性。因此。泰安卫星同步时钟系统

信息来源于互联网 本站不为信息真实性负责